Home
Class 12
MATHS
Factorise: |[x,y,z],[x^2,y^2,z^2],[yz,...

Factorise: `|[x,y,z],[x^2,y^2,z^2],[yz,zx,xy]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Show that : |[x, y, z ],[x^2,y^2,z^2],[x^3,y^3,z^3]|=x y z(x-y)(y-z)(z-x)dot

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)

Using the properties of determinants, show that: [[x, x^2, yz],[y, y^2, zx],[z, z^2, xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Using Cofactors of elements of third column, evaluate Delta=|[1 , x, yz],[1, y, zx],[1, z, xy]|

Factorise : 4xy -x^(2) - 4y^(2) + z^(2)

Factorise x^(2)-(y-z)^(2) .

Prove that |[yz-x^2,zx-y^2,xy-z^2],[zx-y^2,xy-z^2,yz-x^2],[xy-z^2,yz-x^2,zx-y^2]| is divisible by (x+y+z), and hence find the quotient.

If D_1=|[1, 1, 1],[x^2,y^2,z^2],[x, y, z]| and D_2=|[1, 1, 1],[yz, zx,xy], [x, y, z]| without expanding prove that D_1=D_2