Home
Class 12
MATHS
The roots of ax^(2)+bx+c=0 are greater t...

The roots of `ax^(2)+bx+c=0` are greater than the roots of `2x^(2)+3x+1=0` by unity, then
`(1) 2b^2 = a ^2(1 + 4ac)`
`(2) 2b^2 = a^2(1 + 8ac)`
`(3) 8b^2 = a^2 (1 + 4ac)`
`(4) 4b^2 = a^2 (1 + 16ac)​`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the difference of the roots of x^2-p x+q=0 is unity, then a) p^2+4q=1 b) p^2-4q=1 c) p^2+4q^2=(1+2q)^2 d) 4p^2+q^2=(1+2p)^2

If tanthetaa n dsectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2 - 4ac)dot

If tantheta and sectheta are the roots of a x^2+b x+c=0, then prove that a^4=b^2(b^2-4ac)dot

If the roots of the equation ax^(2)+bx+c=0 be in the ratio 3:4, show that 12b^(2)=49ac .

If r is the ratio of the roots of the equation ax^2 + bx + c = 0 , show that (r+1)^2/r =(b^2)/(ac)

If sinthetaand costheta are the roots of the equation ax^2+bx+c=0 , then (A) (a-c)^2=b^2+c^2 (B) (a+c)^2=b^2-c^2 (C) a^2=b^2-2ac (D) a^2+b^2-2ac=0

Prove that the condition that one root of ax^(2)+bx+c=0 may be the square of the other is b^(3)+a^(2)c+ac^(2)=3abc .

If x=1 is a common root of a x^2+a x+2=0 and x^2+x+b=0 then, a b= (a) 1 (b) 2 (c) 4 (d) 3

Find the values of a,b,c,d, if 1,2,3,4 are the roots of x^4 +ax^3 +bx^2 +cx +d=0

The equation formed by decreasing each root of ax^(2)+bx+c=0 by 1 is 2x^(2)+8x+2=0 then a. a=-b b. b=-c c. c=-a d. b=a+c