Home
Class 12
MATHS
If f(x)=e^(x), then show that f(a)*f(b )...

If `f(x)=e^(x)`, then show that `f(a)*f(b ) = f(a+b)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(px+2), then f(a)f(b) is

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

f(x)=(2x+3)/(3x+2), then show that f(x)*f((1)/(x))=1. if f(x)=4, then show that f(x+1)-f(x)=f(x)

If f(x) = e^(-x) , then (f (-a))/(f(b)) is equal to

If y=f(x)=(ax-b)/(bx-a), show that x=f(y)

If f(x)=(2)/(1+x)-1 show that f[f{f(x)}]=f(x)

If f(x)=x^(3) show that int_(a)^(b)f(x)dx=(b-a)/(6){f(a)+4f((a+b)/(2))+f(b)}

find f(x)=(ax-b)/(bx-a) show that x=f(y)

If f(a+b-x)=f(x) , then int_(a)^(b)x f(x)dx=

If f(x)=log_(e)((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+ab))