Home
Class 10
MATHS
If (1)/(a)+(1)/(b)+(1)/(c)=(1)/(a+b+c) t...

If `(1)/(a)+(1)/(b)+(1)/(c)=(1)/(a+b+c)` then show that `(1)/(a^(3))+(1)/(b^(3))+(1)/(c^(3))=(1)/(a^(3)+b^(3)+c^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

if a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0 then

a+b+c=6and(1)/(a)+(1)/(b)+(1)/(c)=(3)/(2), then find (a)/(b)+(b)/(c)+(b)/(a)+(b)/(c)+(c)/(a)+(c)/(b)

If a^(1//3)+b^(1//3)+c^(1//3)=0 , then show that (a+b+c)^(3)=27 abc .

Prove that (a^(8)+b^(8)+c^(8))/(a^(3)b^(3)c^(3))>(1)/(a)+(1)/(b)+(1)/(c)

If a^((1)/(3))+b^((1)/(3))+c^((1)/(3))=0 then (a+b+c)^(3)=