Home
Class 11
MATHS
Find lim(x->oo) {(1+1/x)^x}^5 =e^5...

Find `lim_(x->oo) {(1+1/x)^x}^5 =e^5`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->oo)(1-x+x.e^(1/n))^n

Evaluate the following limit: (lim)_(x->oo)(a^(1//x)-1)x

lim_(xto oo)(x/(1+x))^(x) is

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

lim_(x->oo)(e^(11x)-7x)^(1/(3x))

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

lim_(x->0)(e^(5x) - 1)/(3x)

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1