Home
Class 10
MATHS
cot((pi)/(20))*cot((3 pi)/(20))*cot((5 p...

`cot((pi)/(20))*cot((3 pi)/(20))*cot((5 pi)/(20))*cot((7 pi)/(20))*cot((9 pi)/(20)`)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

cot((-15pi)/4)

Find the exact value of the expression tan(pi/20)-tan((3pi)/20)+tan((5pi)/20)-tan((7pi)/20)+tan((9pi)/20).

log_(8)(128)-log_(9)cot((pi)/(3))=

(cos(pi/12)-sin(pi/12))(tan(pi/12)+cot(pi/12))=

Prove that: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

If cosec . (pi)/(32)+ cosec. (pi)/(16)+ cosec. (pi)/(8)+ cosec. (pi)/(4)+ cosec. (pi)/(2)= cot. (pi)/(k) , then the value of k is

Show that sin^(- 1)(sin((33pi)/7))+cos^(- 1)(cos((46pi)/7))+tan^-1(-tan((13pi)/8))+cot^-1(cot(-(19pi)/8))=(13pi)/7

Find the value of tan. pi/20tan. (3pi)/20tan. (5pi)/20tan. (7pi)/20tan. (9pi)/20 .

Prove that: cos((3pi)/2+x)cos(2pi+x){cot((3pi)/2-x)+"cot"(2pi+x)}=1

(cos(pi-x)cos(-x))/(sin(pi-x)cos(pi/2+x))=cot^(2)x