Home
Class 10
MATHS
Prove that : (cos x - cos y)^(2) + (sin ...

Prove that : `(cos x - cos y)^(2) + (sin x - sin y)^(2) = 4 sin^(2) ((x - y)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos x + cos y)^2 + (sin x - sin y)^2 = 4 cos^2\ (x+y)/2

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

Prove that : (sin x + sin y)/(sin x - sin y) = tan ((x+y)/2).cot ((x-y)/2)

Prove that : (sin x - sin y)/(cos x + cos y) = tan ((x-y)/2)

Prove that : (sin x + sin y)/(cos x + cos y) = tan ((x+y)/2)

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

Prove that : sin 2x + 2 sin 4x + sin 6x = 4 cos^2 x sin 4x .

Prove that : (cos 4x sin 3x - cos 2x sin x)/(sin 4x .sin x + cos 6x .cos x) = tan 2x

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0