Home
Class 12
MATHS
lim( x -> 0 ) ( e^x - e^(-x) ) / Sinx ...

`lim_( x -> 0 ) ( e^x - e^(-x) ) / Sinx`
( a ) 1
( b ) 2
( c ) 0
( d ) -1

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( x -> 0 ) ( e^x - 1 )/ sinx

lim_(x to 0) (e^x-e^sinx)/(x-sinx)

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

Evaluate : lim_( x -> 0 ) ( (e^N - sinx - 1) )/a

lim_(x->0)(e^(2x)-1)/(3x)

lim_(x rarr 0)(e^x-e^sinx)/(2(x-sinx))=

lim_(x rarr0)((e^(x)-x-1)/(x))

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x rarr0)(e^(sin x)-1)/(x)

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =