Home
Class 12
MATHS
lim(n rarr oo)(sum(r=1)^(n)r^(2))/(n^(3)...

`lim_(n rarr oo)(sum_(r=1)^(n)r^(2))/(n^(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(sum_(r=1)^(n)r^(1/a)(n^(a-(1)/(a))+r^(a-(1)/(a))))/(n^(a+1))=

Which of the following is the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(3))/(r^(4)+n^(4))?

lim_(n rarr oo)sum_(i=1)^(n)(5)/(n^(3))(i-1)^(2) equals

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is

Evaluate: lim_(n rarr oo) (sum_(r=0)^( n) (1)/(2^(r))) .

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

[lim_(f rarr oo)sum_(r=1)^(n)(2r-1)/(2^(r))" is equal to "],[[(A),1],[(C),3]]

Evaluate lim_(n rarr oo)[sum_(r=1)^(n)(1)/(2^(r))], where [.] denotes the greatest integer function.

lim_(x rarr oo)sum_(r=1)^(n)((x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=