Home
Class 12
MATHS
lim(n rarr oo)(2^(n)-1)/(2^(n))...

`lim_(n rarr oo)(2^(n)-1)/(2^(n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(3n))/(3^(2n))=

lim_(n rarr oo)(n^(2))/(2^(n))

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1),x in R, the the the points where f(x) is not continuous are

lim_(n rarr oo)2^(n)sin(a)/(2^(n))

Discuss the continuity of f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n+1))

Let a_(1),a_(2),...,a_(n) .be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 Prove that lim_(n rarr oo)((a_(n))/(2^(n-1)))=(2)/(pi)

The value of lim_(n rarr oo)((1)/(2^(n))) is

lim_(n rarr oo)(1-(2)/(n))^(n)