Home
Class 11
MATHS
Prove that sin^(-1)sqrt(1/3)=(1)/(2)cos^...

Prove that `sin^(-1)sqrt(1/3)=(1)/(2)cos^(-1)(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

Prove that : 4(sin^(-1)(1/sqrt(10)) + cos^(-1)( 2/sqrt(5)))=pi

sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((sqrt(3))/(2))

Find the value of sin^(-1)(-(sqrt(3))/(2))+cos^(-1)((1)/(2))+tan^(-1)(-(1)/(sqrt(3)))

sin^(-1)((sqrt(3))/(2))+2cos^(-1)((sqrt(3))/(2))

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

Prove that: sin^(-1)((3)/(5))+cos^(-1)((5)/(sqrt(26)))=tan^(-1)((19)/(17))

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that sin ^ (- 1) ((3) / (5)) + cos ^ (- 1) ((15) / (17)) + sin ^ (- 1) ((36) / (85)) = (pi) / (2)