Home
Class 12
MATHS
Let f(x) be a function defined as f(x)=...

Let f(x) be a function defined as f(x)=`{[x,;x in Q],[1-x,;x cancel(in) Q]:}`, If `g(x)=f(f(x))` then value of `[g(1)+g((1)/(2))+g((pi)/(2))],`where `[.]` greatest integer function
(A) 2 (B) 3 (C) 4 (D) 1

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x)/(1+x^(2)) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greatest integer function), then

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Let f(x)=sin x,g(x)=[x+1] and h(x)=gof(x) where [.] the greatest integer function. Then h'((pi)/(2)) is

If (x)={g^(x),x =0f(x)={g^(x),x =0 where [.1) denotes the greatest integer function. The f(x)

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

Let g(x)=1+x-[x] and f(x)={-1,x 0. Then for all x,f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

If f be greatest integer function defined asf(x)=[x] and g be the mdoulus function defined as g(x)=|x|, then the value of g of (-(5)/(4)) is _____