Home
Class 12
MATHS
If a/b+b/a=-1 then a^ 3 - b ^ 3 =...

If` a/b+b/a`=-1 then `a^ 3 - b ^ 3` =

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=1 , a^2+b^2+c^2=9 and a^3+b^3+c^3=1 , then 1/a + 1/b + 1/c is (i) 0 (ii) -1 (iii) 1 (iv) 3

If a+b+c=1 , a^2+b^2+c^2=9 and a^3+b^3+c^3=1 , then 1/a + 1/b + 1/c is (i) 0 (ii) -1 (iii) 1 (iv) 3

If a : b=3:4, then 4a :3b= (a) 4:3 (b) 3:4 (c) 1:1 (d) None of these

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x,y, z are different real umbers and (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^2+lamda then the value of lamda is

In DeltaABC , If 1/(a+b)+1/(b+c)=3/(a+b+c) , then angleB=?

If a^(1/3)+\ b^(1/3)+\ c^(1/3)=0 , then+? (a) a+b+c=0 (b) (a+b+c)^3=27\ a b c (c) a+b+c=3a b c (d) a^3+b^3+c^3=0

If (a)/(2)-(b)/(3)=1 , what is 2a+3b in terms of b?

Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=(1-b^3)/b=(1-c^3)/c dot The value of (a^3+b^3+c^3) is _____________.

If a, b, c are in GP, prove that a^ 2 b^ 2 c ^ 2 ( 1/ a ^ 3 +1/ b ^ 3 ​ +1/ c ^ 3 ​ )=a ^ 3 +b^ 3 +c^ 3 .