Home
Class 12
MATHS
lim(n->oo) 1/n^3 {1+3+6+......+(n(n+1))/...

`lim_(n->oo) 1/n^3 {1+3+6+......+(n(n+1))/2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n rarr oo)2^(1/n)

Evaluate the following limit: (lim)_(n->oo)(1^3+2^3+ n^3)/((n-1)^4)

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

the value of lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}