Home
Class 12
MATHS
Find lim(n->oo) {1/3+1/3^2+1/3^3+.....+1...

Find `lim_(n->oo) {1/3+1/3^2+1/3^3+.....+1/3^n}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

the value of lim_(n->oo) {1/(n^3+1)+4/(n^3+1)+9/(n^3+1)+.................+n^2/(n^3+1)}

Find a for which lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

Let alpha=lim_(n->oo)((1^3-1^2)+(2^3-2^2)+.....+(n^3-n^2))/(n^4), then alpha is equal to :

Evaluate : lim_(n-> oo) (1^4+2^4+3^4+...+n^4)/n^5 - lim_(n->oo) (1^3+2^3+...+n^3)/n^5