Home
Class 12
MATHS
1.|[1,1,1],[b+c,c+a,a+b],[b+c-a,c+a-b,a+...

1.`|[1,1,1],[b+c,c+a,a+b],[b+c-a,c+a-b,a+b-c]|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,ab, c]| , then

By using properties of determinants. Show that: (i) |[1,a, a^2],[ 1,b,b^2],[ 1,c,c^2]|=(a-b)(b-c)(c-a) (ii) |[1, 1, 1],[a, b, c],[ a^3,b^3,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then a*b+b*c+c*a is equal to

Show that |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b ,c(a+b)]|=0 .

By using properties of determinants. Show that: |[a^2+1,a b, a c],[ a b,b^2+1,b c],[c a, c b, c^2+1]|=(1+a^2+b^2+c^2)

Using properties of determinant show that: |[1 , a , bc] , [1 , b , ca] , [1 , c , a b]|=(a-b)(b-c)(c-a)

If |b+c c+a a+b a+b b+c c+a c+a a+b b+c|=k|ab c c a b b c a| , then value of k is 1 b. 2 c. 3 d. 4

Prove that |[1+a,1, 1], [1,1+b,1], [1, 1, 1+c]|=a b c(1+1/a+1/b+1/c)=a b c+b c+c a+a b