Home
Class 10
MATHS
Evaluate : a^((m - n )l) times a^((n -...

Evaluate :
` a^((m - n )l) times a^((n - l )m) times a^((l - m )n) `
( a ) 1
( b ) 0
( c ) 2
( d ) `a^( lmn )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : ( x^(m + n ) times x^(n + l ) times x^( l + m ) ) / ( x^m times x^n times x^l )

Evaluate : ( x^(m + n ) times x^(n + l ) times x^( l + m ) ) / ( x^m times x^n times x^l )

Evaluate : ( m^(-3) times n^4 ) /( n^2 times m^-8 ) ( m! = 0 , n != 0 )

(x^(m+n)times x^(n+l)times x^(l+m))/((x^(m)times x^(n)times x^(l))^(2))=1

How many electrons in a given atom can have the following quantum numbers ? (a) n = 3, l = 1 (b) n = 3, l = 2, m_l = 0 (c ) n = 3, l = 2, m_l = +2, m_s = + 1/2 (d) n = 3 .

Given below are the sets of quantum numbers for given orbitals .Name these orbitals a. n = 2 l = 1 m = -1 b. n = 4 l = 2 m = 0 c. n = 3 l = 1 m = +- 1 d. n = 4 l = 0 m = 0 e. n = 3 l = 2 m = +- 2

If the vectors vec a, vec b, vec c are non-coplanar and l,m,n are distinct real numbers, then [(l vec a + m vec b + n vec c) (l vec b + m vec c + n vec a) (l vec c + m vec a + n vec b)] = 0, implies (A) lm+mn+nl = 0 (B) l+m+n = 0 (C) l^2 + m^2 + n^2 = 0

Describe the orbital with the following quantum numbers : (i) n = 1, l = 0 " " (ii) n = 2, l = 1, m = 0 (iii) n = 3, l = 2 " " (iv) n = 4, l = 1 (v) n = 3, l = 0, m = 0 " " (vi) n = 3, l = 1 .

In a multi - electron atom , which of the following orbitals described by the three quantum numbers will have the same energy in the absence of magnetic and electric fields ? (A) n=l, l=0,m=0 (B) n = 2, l =0 , m= 0 (C) n = 2 , l = 1 , m = 1 (D) n = 3, l =2 , m=1 (E) n=3,l=2,m=0.

If f(x)=((x^(l))/(x^(m)))^(l+m)((x^(m))/(x^(n)))^(m+n)((x^(n))/(x^(l)))^(n+l) then f'(x) is equal to (a) 1 (b) 0 (c) x^(l+m+n) (d) none of these