Home
Class 11
MATHS
Prove that 2tan^(-1)(1/3)+tan^(-1)(1/7)=...

Prove that `2tan^(-1)(1/3)+tan^(-1)(1/7)=pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

2tan^(-1)(1/2)-tan^(-1)(1/7)=(pi)/(4)

Prove that tan^(-1)(3/5)+tan^(-1)(1/4)=(pi)/(4)

prove that 2(tan^(-1)1)/(3)+(tan^(-1)1)/(7)=(pi)/(4)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Prove that: 2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

prove that: 2 tan ^(-1)x =(1)/(3) tan^(-1).(1)/( 7) = (pi)/(4)

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3=pi