Home
Class 12
MATHS
If z=(sqrt(3)+i)/(2), then z^(69) equals...

If `z=(sqrt(3)+i)/(2),` then `z^(69)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=i log(2-sqrt(3)) then cosz

If z=(3-sqrt(7)i) , then find |z^(-1)| .

Given z=(1+isqrt(3))^(100), then [R E(z)//I M(z)] equals 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

Given z=(1+isqrt(3))^(100), then [Re(z)//Im(z)] equals (a) 2^(100) b. 2^(50) c. 1/(sqrt(3)) d. sqrt(3)

If z = (1)/((2-3i)^(2)) then |z| is equal to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0 , where i=sqrt(-1) , then z bar(z) is equal to

If z=(1)/(2)(sqrt(3)-i) , then the least possible integral value of m such that (z^(101)+i^(109))^(106)=z^(m+1) is

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z_(1),z_(2),z_(3) are the vertices of an equilational triangle ABC such that |z_(1)-i|=|z_(2)- i| = |z_(3)-i|, then |z_(1)+z_(2)+z_(3)| equals to