Home
Class 12
MATHS
Solve lim(x->0) sinx^n/x...

Solve `lim_(x->0) sinx^n/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo) (sinx/x) =

Write the value of (lim)_(x->0)(sinx^0)/x

lim_(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n//m (d) none of these

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to (a) 4 (b) 1 (c) 2 (d) 3

If lim_(x->0)(x^n-sinx^n)/(x-sin^n x) is non-zero finite, then n must be equal to 4 (b) 1 (c) 2 (d) 3

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

lim_(x->0)(sinx)^n/(sinx)^m,(mltn), is equal to (a)1 (b) 0 (c) n//m (d) none of these