Home
Class 12
MATHS
I=int(0)^(a+2)cos((z)/(2))dz...

`I=int_(0)^(a+2)cos((z)/(2))dz`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2) |cos((pix)/(2))| is

int_(0)^(2) |cos((pix)/(2))| is

I=int_(0)^(2 pi)cos^(5)x*dx

If I_(I)=int_(0)^( pi/2)cos(sin x)dx,I_(2)=int_(0)^((pi)/(2))sin(cos x)d, and I_(3)=int_(0)^((pi)/(2))cos xdx then find the order in which the values I_(1),I_(2),I_(3), exist.

Let I_(1)=int_(0)^(3 pi)(f(cos^(2)x)dxI_(2)=int_(0)^(2 pi)(f(cos^(2)x)dx and I_(3)=int_(0)^( pi)(f(cos^(2)x)dx, then (A)I_(1)+2P_(2)+3I_(2)=0(B)I_(1)=2I_(2)+I_(3)(C)I_(2)+I_(3)=I_(1)(D)I_(1)=2I_(3)

I=int_(0)^(2 pi)cos^(-1)(cos x)dx

Evaluate: I=int_(0)^(2 pi)x*cos^(5)xdx

int_(0)^((pi)/(2))cos^(2)xdx

I_(1)=int_(0)^((pi)/(2))(sin x-cos x)/(1+sin x cos x)dx,I_(2)=int_(0)^(2 pi)cos^(6)xdx,I_(3)=int_((pi)/(2))^((pi)/(2))sin^(3)xdx,I_(4)=int_(0)^(1)1n((1)/(x)-1)dx. Then I_(1)=I_(3)=I_(4)=0,I_(1)!=0I_(1)=I_(3)=0,I_(4)!=0I_(1)=I_(2)=0,I_(4)!=0I_(1)=I_(2)=I_(3)=0,I_(4)!=0