Home
Class 12
MATHS
The inverse of the function f(x)=(4-(x-7...

The inverse of the function `f(x)=(4-(x-7)^(3))^((1)/(5))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=(4-(x-7)^(3))^(1//5)

Find the inverse to the function y=3x+5.

If f(x)=(-x|x|)/(1+x^3) in R then the inverse of the function f(x) is f^(-1)(x)=

Let g(x) be the inverse of the function f(x) and f'(x)=(1)/(1+x^(3)) then g'(x) equals

Computer the inverse of the function : f(x) = (x + sqrt(x^(2) + 1))

Let phi(x) be the inverse of the function f(x) and f'=(1)/(1+x^(5)), then (d)/(dx)phi(x) is

If g is the inverse of a function f and f'(x)=(1)/(1+x^(n)), g'(x) is equal to