Home
Class 10
MATHS
Let alpha, beta , gamma are the roots of...

Let `alpha`, `beta` , `gamma` are the roots of `f(x)=ax^(3)+bx^(2)+cx+d=0` . Then the condition for the product of two of the roots is `-1` is
(A) `c(a+c)+b(b+d)=0`
(B) `a(a+c)+d(b+d)=0`
(C) `c(a-c)+b(b-d)=0`
(D) `a(a-c)+d(b-d)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta,gamma be the roots of (x-a) (x-b) (x-c) = d, d != 0 , then the roots of the equation (x-alpha)(x-beta)(x-gamma) + d =0 are :

If the roots of the equation x^(3) + bx^(2) + cx + d = 0 are in arithmetic progression, then b, c and d satisfy the relation

Find the values of a,b,c,d, if 1,2,3,4 are the roots of x^4 +ax^3 +bx^2 +cx +d=0

Let alpha,beta be the roots of the equation (x-a)(x-b)=c ,c!=0. Then the roots of the equation (x-alpha)(x-beta)+c=0 are a , c b. b , c c. a , b d. a+c , b+c

Let alpha,beta be the roots of the equation (x-a)(x-b)=c ,c!=0 Then the roots of the equation (x-alpha)(x-beta)+c=0 are a ,c (b) b ,c a ,b (d) a+c ,b+c

If alpha,beta are the roots of the equation ax^2 + bx+c=0 then the roots of the equation (a + b + c)x^2-(b + 2c)x+c=0 are (a) c (b) d-c (c) 2c (d) 0

If alpha,\ beta,\ gamma are the zeros of the polynomial f(x)=a x^3+b x^2+c x+d , then 1/alpha+1/beta+1/gamma= (a) b/d (b) c/d (c) -c/d (d) c/a

If c lt a lt b lt d , then roots of the equation bx^(2)+(1-b(c+d)x+bcd-a=0

If alpha, beta, gamma are the roots of the equation x^(4)+Ax^(3)+Bx^(2)+Cx+D=0 such that alpha beta= gamma delta=k and A,B,C,D are the roots of x^(4)-2x^(3)+4x^(2)+6x-21=0 such that A+B=0 The value of C/A is

If a, b are the real roots of x^(2) + px + 1 = 0 and c, d are the real roots of x^(2) + qx + 1 = 0 , then (a-c)(b-c)(a+d)(b+d) is divisible by