Home
Class 12
MATHS
If A+B+C=pi/2,Show that cotA+cotB+cotC=C...

If `A+B+C=pi/2`,Show that `cotA+cotB+cotC=CotAcotBcotC`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi/2 , show that : cotA+cotB+cotC=cotA cotB cotC

In DeltaABC , prove that: cotA+cotB+cotC = cotAcotBcotC+"cosec"A"cosec"B"cosec"C

If A+B+C=pi , prove that: cotB cotC + cotC cotA + cotA cotB=1 .

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that : (cotB+cotC) (cotC+cotA) (cotA+cotB)=cosecA cosecB cosecC

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

If a^2,b^2,c^2 are in A.P., prove that cotA ,cotB ,cotC are in AdotPdot

i) If A+B=pi/4 prove that: (cotA-1)(cotB-1)=2

In a Delta ABC, GA,GB,GC makes angles alpha, beta, gamma with each other where G is the centroid to the Delta ABC then show that, cotA + cotB + cotC + cot alpha + cot beta +cotgamma =0.