Home
Class 12
MATHS
Solve lim(x->oo) [1/1.2+1/2.3+1/3.4+.......

Solve `lim_(x->oo) [1/1.2+1/2.3+1/3.4+......1/(n(n+1))]=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

lim_(x->oo)(1-x+x.e^(1/n))^n

Evalute lim_(n->oo)[1/((n+1)(n+2))+1/((n+2)(n+4))+......+1/(6n^2)]

Evaluate: lim_(n->oo)[1/(n a)+1/(n a+1)+1/(n a+2)++1/(n b)]

The value of lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3) is equal to

lim_(n->oo)(1^2+2^2+3^2+..........+n^2)/n^3

If the value of lim_(n->oo){1/(n+1)+1/(n+2)+.......+1/(6n)} is 'K' then find value of (K - log_e 6)? .

lim_(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)