Home
Class 12
MATHS
Prove that int a^(x)dx=(a^(x))/(log a)+C...

Prove that `int a^(x)dx=(a^(x))/(log a)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int 1/(a^(2)-x^(2)) dx = 1/(2a) log |(a+x)/(a-x)|+c.

Prove that int_2^3 x/(x^2+1) dx=log sqrt2

int (ln x)^2/(x)dx

prove that int(1)/(x(x^(4)+1))dx=(1)/(4)log((x^(4))/(x^(4)+1))+c

int (ln x)/x dx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int(dx)/(x log x)

int x^(x)ln(ex)dx

int log x*dx