Home
Class 12
MATHS
Solve for x : tan^(-1 ) ( 1 + x ) + tan...

Solve for x :
`tan^(-1 ) ( 1 + x ) + tan^(-1 ) ( 1 - x ) = tan^(-1 ) (1/2 )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x , tan^(-1) ( x + 1) + tan^(-1) x + tan^(-1) ( x - 1) = tan ^(-1) 3x

Solve for x:2tan^(-1)(cos x)=tan^(-1)(2csc x)

Solve for x:2tan^(-1)(cos x)=tan^(-1)(2csc x)

Solve for x : tan^(-1)(x/2)+tan^(-1)(x/3)=pi/4 , 0

Solve : tan^(-1)( 1/2) = cot^(-1) x + tan^(-1)( 1/7)

Solve for x : tan^(-1)(2+x)+tan^(-1)(2-x)=tan^(-1)2/3 , where x sqrt(3)

Solve: tan ^ (- 1) (x-1) + tan ^ (- 1) x + tan ^ (- 1) (x + 1) = tan ^ (- 1) 3x

Solve for x; tan^(-1)(1/2)+tan^(-1)2=tan^(-1)x

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)