Home
Class 12
MATHS
lim(x->0) (2x-1)=...

`lim_(x->0) (2x-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following limit: (lim)_(x->0)(x(2^x-1))/(1-cos x)

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

(lim)_(x->0)(cos2x-1)/(cosx-1)

Evaluate the following limit: (lim)_(x->0)(cos2x-1)/(cos x-1)

The value of lim_(x->0)(1-1/2^x)(1/(sqrt(tanx+4)-2))

lim_(x->0)(1/(x^2)-1/(tan^2x))

The value of lim_(x->0)((1+2x)/(1+3x))^(1/x^2)e^(1/x) is e^(5/2) b. e^2 c. e^(-2) d. 1

lim_(x->0)((xtan2x-2xtanx)/(1-cos2x)^2) is equal to

If f(x) be a cubic polynomial and lim_(x->0)(sin^2x)/(f(x))=1/3 then f(1) can not be equal to :

Use the formula Lim_(xto 0) (a^(x)-1)/x = log_(e)a " to find " Lim_(xto0) (2^(x)-1)/((1+x)^(1//2)-1)