Home
Class 12
MATHS
In any /\ABC,Prove that [b^2-c^2]cotA+[c...

In any `/_\ABC`,Prove that `[b^2-c^2]cotA+[c^2-a^2]cotB+[a^2-b^2]cotc`= 0

Promotional Banner

Similar Questions

Explore conceptually related problems

In any /_\ A B C , prove that (b^2-c^2)cotA+(c^2-a^2)cotB+(c^a-b^2)cotC=0

In a Delta A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

For any triangle ABC, prove that (b^2 - c^2) cotA + (c^2 - a^2) cotB + (a^2 - b^2) cotC = 0

In any DeltaABC , prove that (b^(2)-c^(2))cotA+(c^(2)-a^(2))cotB+(a^(2)-b^(2))cotC=0

In any DeltaABC , prove that : (b^2 + c^2 - a^2)/(c^2 +a^2 -b^2) = (tan B)/(tan A)

In any triangle A B C , prove that: (b-c)cot A/2+(c-a)cot B/2+(a-b)cot C/2 =0

In Delta ABC , prove that: (a+b+c)/(a-b+c)=cotA/2cotC/2

In any DeltaABC , prove that Delta=(b^(2)+c^(2)-a^(2))/(4cotA) .

In any triangle A B C , prove that: (b-c)cot (A/2)+(c-a)cot (B/2)+(a-b)cot (C/2) =0

In any A B C , prove that: 2{asin^2C/2+csin^2A/2}=a+c-b