Home
Class 12
MATHS
Lt(x rarr0)(sqrt(1+x)-1)/(x)...

`Lt_(x rarr0)(sqrt(1+x)-1)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0)(sqrt(1-x)-1)/(x)=-(1)/(2)

lim_(x rarr0)sqrt(x)=

Lt_(x rarr0)(sqrt(2+x)-sqrt(2))/(x)

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

Lt_(x rarr 0) ((1+x)^(n)-nx-1)/(x^(2)) n gt 1 is euqal to

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

The value of : lim_(x rarr0)(cosx-1)/(x) is

If f(x) be a twice differentiable function from RR rarr RR such that t^(2)f(x)-2tf'(x)+f''(x)=0 has two equal values of t for all x and f(0)=1,f'(0)=2, then lim_(x rarr 0)((f(x)-1)/(x)-(t)/(2)) is

lim_(x rarr0)(x)/(sqrt(6-x)-4)

Evaluate : lim_(x rarr 0)""(sin x^(@))/(x)