Home
Class 12
MATHS
Show that : lim(( x, y ) -> ( 0 , 0 )) ...

Show that :
`lim_(( x, y ) -> ( 0 , 0 )) ( 1/|x| + 1/|y| ) = oo `

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that lim_(x rarr 0^+) (1+x)^(1/x) =e

lim_(x rarr 0) x^2/y = 0

To show lim_( x to 0) "x sin" 1/x =0 .

Show that : Lim_(x rarr0)(e^(x)-sin x-1)/(x)=0

Show that lim_(xrarr0)(1)/(|x|)=oo.

Lim_( x -> oo ) a^x = --- (if 0 < a < 1 )

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

Show that lim_(x rarr0+)((2|x|)/(x)+x+1)=3

underset x rarr oo lim_ (x rarr oo) ((x ^ (2) +1) / (x + 1) -ax-b) = 0 then find

lim_ (x rarr0) ((x + y) sec (x + y) -y sec y) / (x)