Home
Class 11
MATHS
Prove that sin^(-1)(3/5)-cos^(-1)(12/13)...

Prove that `sin^(-1)(3/5)-cos^(-1)(12/13)=sin^(-1)(16/65)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Prove that sin^(-1). 3/5 +cos^(-1) . 12/13 = sin^(-1). 56/65

Prove that 2sin^(-1)((3)/(5))-cos^(-1)((5)/(13))=cos^(-1)((323)/(325))

Prove that cos^(-1)(3/5) + cos^(-1) (12/13) + cos^(-1)( 63/65) =pi/2 .

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

Prove that cos^(-1)((3)/(5))+cos^(-1)((12)/(13))+cos^(-1)((63)/(65))=(pi)/(2)

Prove that sin^(-1)(5/13)+sin^(-1)(16/65)=cos^(-1)(4/5)

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=

Prove that: (cos^(-1)4)/(5)+(cos^(-1)(12))/(13)=(cos^(-1)(33))/(65)