Home
Class 12
MATHS
Prove that int(0)^(pi/2) logcosdx=-pi/2l...

Prove that `int_(0)^(pi/2) logcosdx=-pi/2log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)log(1+cosx)dx=-pi(log2)

Prove that int_(0)^(pi//2)(2logsinx-logsin2x)dx=(pi)/(2)(log2) .

int_(0)^(pi//2)log(tanx+cotx)dx=pi(log2)

int_(0)^(pi//2)x cot x dx=(pi)/(2)(log2)

Prove that int_0^(pi/2) sin2xlogtanxdx=0

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^((pi)/(2))log(cos x)dx=

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2