Home
Class 12
MATHS
lim(n->oo) (1+2+3+4+.........n)/(2n^2)...

`lim_(n->oo) (1+2+3+4+.........n)/(2n^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Evaluate: lim_(n rarr oo) (n^(2)(1+2+3+4+......+n))/(n^(4)+4n^(2)) .

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))