Home
Class 12
MATHS
int sin^mx.cos^nx.dx can be evaluated by...

`int sin^mx.cos^nx.dx` can be evaluated by putting `.........=t` when m is odd.
a) `cosx`
b) `sinx`
c) `secx`
d) `tanx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int sin mx cos nxdx,m!=n

Integrate: int sin mx cos nxdx,m!=n

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

int(cosx+sinx)/(sin x-cos x)dx=

int(sin x-cos x)/((cosx+sinx))dx=

The value of int2^("mx").3^("nx")dx (when m, n in N ) is equal to:

int(sinx.cosx)/(a^2sin^2x+b^2cos^2x)dx

" (8) "int(cosx-sinx)/(sin x+cos x)dx

int((cosx+sinx)dx)/(sin x-cos x)

Given that n is odd and m is even integer. the value of int _(0) ^(x ) cos mx sin nxds is :