Home
Class 12
MATHS
Evaluate : lim( n -> oo ) ( (n)! )/ ( (...

Evaluate :
`lim_( n -> oo ) ( (n)! )/ ( ( n + 1 )! - ( n! ) )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_ (n rarr oo) (1) / (n) sum_ (r = n + 1) ^ (2n) log_ (e) (1+ (r) / (n))

lim_ (n rarr oo) (x ^ (n)) / (n!)

evaluate lim_ (n rarr oo) ((e ^ (n)) / (pi)) ^ ((1) / (n))

Using Sandwich theorem, evaluate lim_ (n rarr oo) ((1) / (1 + n ^ (2)) + (1) / (2 + n ^ (2)) + ...... + (n) / (n + n ^ (2)))

Evaluate lim_ (n rarr oo) [(1+ (1) / (n)) 91+ (2) / (n)) .... (1+ (n) / (n))] ^ ((1) /(a))

lim_ (n rarr oo) [(n!) / (n ^ (n))] ^ ((1) / (n))

lim_ (n rarr oo) ((n + 2)! + (n + 1)!) / ((n + 3)!)

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))

Evaluate: lim_(n rarr oo)(n^(p)sin^(2)(n!))/(n+1)

Evaluate: (lim)_(n rarr oo)[(n!)/(n^(n))]^(1/n)