Home
Class 12
MATHS
lim(x rarr0)(x)^(1/x) is equal to...

`lim_(x rarr0)(x)^(1/x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=|(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c))|, where c is a constant, then lim_(x rarr0)(g(x))/(x) is equal to

lim_(x rarr0)(1+2x)^(5/x)

If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the greatest integer function, then lim_(x rarr 0) f(x) is equal to

Lt_(x rarr0)(tan3x)/(2x) is equal to

Lt_(x rarr0) (3^(2x)-1)/(x) is equal to

lim_(x rarr0)sqrt(x)=

lim_(x rarr0)(1/x)^(1-cos x)

lim_(x rarr0)(2x^2-3x)/x

lim_(x rarr0)x(cosec x)

The value of : lim_(x rarr0)(cosx-1)/(x) is