Home
Class 12
MATHS
Prove that cos^(-1)(-x)=pi-cos^(-1)x,x i...

Prove that `cos^(-1)(-x)=pi-cos^(-1)x,x` in` [-1,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Prove that : sin^(-1)x+cos^(-1)x=pi/2 , if x in [-1,1]

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Prove that sin (cos^(-1) x) = cos (sin^(-1) x)

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2

Prove that : sin cot^(-1) tan cos^(-1) x=x

Solve: sin^(-1)x=pi/6+cos^(-1)x

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1