Home
Class 12
MATHS
Evaluate : lim( n -> 0 ) ( e^n - e^(-n ...

Evaluate :
`lim_( n -> 0 ) ( e^n - e^(-n ) )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : lim_( x -> 0 ) ( (e^N - sinx - 1) )/a

Evaluate: lim_(n rarr0)(e^(sin x)-(1+sin x))/({tan^(-1)(sin x)}^(2))

evaluate lim_ (n rarr oo) ((e ^ (n)) / (pi)) ^ ((1) / (n))

Evaluate lim_ (n rarr oo) (1) / (n) sum_ (r = n + 1) ^ (2n) log_ (e) (1+ (r) / (n))

Evaluate: lim_(nrarr0) (((2n)!)/(n!n^(n)))^(1/n)

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is:

The value of lim_(x to 0) (e^(nx)-(1+nx+n^2/2x^2))/x^3 (n gt 0) is

Evaluate: lim_(x rarr0)x^(m)(log x)^(n),m,n in N

Evaluate: lim_(n rarr oo)(((n+1)(n+2)...(n+n))^((1)/(n)))/(n)