Home
Class 12
MATHS
lim(x->0) {[x]}/{2x}=...

`lim_(x->0) {[x]}/{2x}`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) [1+[x]]^(2/x), where [:] is greatest integer function, is equal to

lim_(x->0) {(1+x)^(2/x)} (where {.} denotes the fractional part of x (a) e^2−7 (b) e^2−8 (c) e^2−6 (d) none of these

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is

lim_(x->0)x^3cos(2/x) =

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

lim_(x->0^-)([x]+[x^2]+[x^3]++[x^(2n+1)]+n+1)/(1+[x^2]+|x|+2x), n in N is equal to

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

lim_(x->0)(tan8x)/(sin2x)

Evaluate lim_(x-> 0) (tan3x-2x)/(3x- sin^2 x)