Home
Class 12
MATHS
lim(x->0) {x^2+2x+1}/{x^2}=...

`lim_(x->0) {x^2+2x+1}/{x^2}`=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

Evaluate lim_(x->0^-) (x^2-3x+2)/(x^3-2x^2)

lim_(x->0)(1/(x^2)-1/(tan^2x))

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

lim_(x->0)(x+2sinx)/(sqrt(x^2+2sinx+1)-sqrt(sin^2x-x+1))

Use formula lim_(x->0)(a^x-1)/x=log(a) to find lim_(x->0)(2^x-1)/((1+x)^(1/2)-1)

lim_(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1)) is equal to (a) 0 (b) oo (c) 1/2 (d) none of these

lim_(xvecoo)((x^2+2x-1)/(2x^2-3x-2))^((2x+1)/(2x-1)) is equal to (a) 0 (b) oo (c) 1/2 (d) none of these

lim_(xrarr0) ((3x^2 + 2)/ (7x^2 +2))^(1/x^2) is equal to