Home
Class 12
MATHS
lim(x->2) ({1}/{x-2}-{2}/{x^2-2x})=(a)1/...

`lim_(x->2) ({1}/{x-2}-{2}/{x^2-2x})=(a)1/3 (b)1/4 (c)1/5 (d)1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ("lim")_(x->pi)(1+cos^3x)/(sin^2x)i s 1/3 (b) 2/3 (c) -1/4 (d) 3/2

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

The value of lim_(x->1)(1-sqrt(x))/((cos^(-1)x)^2) is 4 (b) 1/2 (c) 2 (d) 1/4

If f(a)=2,f^(prime)(a)=1,g(a)=-1,g^(prime)(a)=2, then the value of lim_(x->a)(g(x)f(a)-g(a)f(x))/(x-a) is (a) -5 (b) 1/5 (c) 5 (d) none of these

lim_(x_vecoo)(e^(1/x^2)-1)/(2tan^-1(x^2)-pi) is equal to (a) 1 (b) -1 (c) 1/2 (d)-1/2

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a) -1 (b) 1 (c) 0 (d) 2

The value of (lim)_(x->(3pi)/4)(1+t a n x1/3)/(1-2cos^2x) is (a) -1//2 (b.) -2//3 (c). -3//2 (d). -1//3

If (x-2)/3=(2x-1)/3-1, then x= (a) 2 (b) 4 (c) 6 (d) 8

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]