Home
Class 12
MATHS
lim(x->0) ((a^x-b^x)/(x))= ? (a)0 (b)1 ...

` lim_(x->0) ((a^x-b^x)/(x))= ? (a)0 (b)1 (c)(log) {a}/{b} (d)(log) {b}/{a}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

lim_(xrarr0)(x^3 log x)

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

lim_(xrarr0)(log(1+x)/x) a) 1 b) e a) -1 b) -e

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

"lim"_(x->0)(ln(t a n(pi/4+a x)))/(sinb x),b!=0 is equal to (a) a/b (b) (2a)/b (c) a/(2b) (d) b/a

lim_(x->oo)cot^(-1)(x^(-a)log_a x)/(sec^(-1)(a^xlog_x a)),(a >1) is equal to (a) 2 (b) 1 (c) (log)_a2 (d) 0

The value of lim_(x->0)(1+sinx-cosx+"log"(1-x))/(x^3) is 1/2 (b) -1/2 (c) 0 (d) none of these

(lim)_(x->oo)a^xsin(b/(a^x)),\ a , b >1 is equal to a. b b . a c. a(log)_e b d. b(log)_e a

lim_(x->0)(log(1+x+x^2)+"log"(1-x+x^2))/(secx-cosx)= (a) -1 (b) 1 (c) 0 (d) 2