Home
Class 12
MATHS
If x=sint , y=sinpt , prove that (1-x^2)...

If `x=sint` , `y=sinpt` , prove that `(1-x^2)(d^2y)/(dx^2)-xdy/dx+p^2y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

If x=sint" and "y=sin mt" then prove that "sqrt(1-x^2)(d^2y)/(dx^2)-xdy/dx+m^2y=0 .

If y=sin^(-1)x, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=sin^(-1)x , show that (1-x^(2))(d^(2)y)/(dx^(2))-xdy/dx=0 .

If y = x sin x, prove that x^(2).(d^2y)/(dx^(2))-2x(dy)/(dx)+(x^(2)+y)y=0

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .