Home
Class 12
MATHS
If the function f:R rarr Rdefined by f(x...

If the function` f:R rarr R`defined by` f(x)=(3^(x)+3^(-x))/2` , then show that `f(x+y) + f(x-y) = 2f(x)f(y)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a function f:R rarr R defined by f(x)=x^(3)+4x+5 , then

The function f:R rarr R defined as f(x)=(x^(2)-x+1)/(x^(2)+x+1) is

The function f:R rarr R be defined by f(x)=2x+cosx then f

The function f:R rarr R defined as f(x)=(3x^2+3x-4)/(3+3x-4x^2) is :

The function f:R rarr R, f(x)=x^(2) is

A function f : R rarr defined by f(x) = x^(2) . Determine {y : f(y) = - 1}

A function f : R rarr R defined by f(x) = x^(2) . Determine (i) range of f (ii). {x: f(x) = 4} (iii). {y: f(y) = –1}

If f: R rarr R is defined by f(x)=3x+2,\ define f\ [f(x)]\

If f:R rarr R be a function defined as f(x)=(x^(2)-8)/(x^(2)+2) , then f is

If f(x) is a real valued and differentaible function on R and f(x+y)=(f(x)+f(y))/(1-f(x)f(y)) , then show that f'(x)=f'(0)[1+t^(2)(x)].