Home
Class 12
MATHS
Prove that sin^(-1)(-x)=-sin^(-1)(x) , x...

Prove that `sin^(-1)(-x)=-sin^(-1)(x)` , `x in [-1,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)(3x-4x^3)=3sin^(-1)x,x in[1/2,1]

Prove that: 3sin^(-1)x=sin^(-1)(3x-4x^(3)),x in[-(1)/(2),(1)/(2)]

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

prove that sin^(-1)(x)+cos^(-1)(x)=pi/2 , -1<=x<=1

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2)

Prove that 2sin^(-1)x=sin^(-1)[2x sqrt(1-x^(2))]

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that 2tan^(-1)1/x=sin^(-1)((2x)/(x^(2)+1))

Prove that : sin^(-1)x+sin^(-1)y=sin^(-1)(xsqrt(1-y^2)+ysqrt(1-x^2))

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)