Home
Class 12
MATHS
Show that : lim( x -> oo ) sqrt(x) [...

Show that :
`lim_( x -> oo ) sqrt(x) [ sqrt( x + 2 ) - sqrt( x ) ] = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)sqrt(x+1)-sqrt(x)

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(x rarr oo)(sqrt(x)-sqrt(x-3))

lim_(x rarr oo)sqrt(3x)-sqrt(x-5)

lim_(x->oo) (x-sqrt(x^2-1))

lim_(x rarr oo)(sqrt(x-a)-sqrt(bx))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

Evaluate : lim_( x -> 1 ) ( sqrt(x) - 1 + sqrt( x -1 ) )/( sqrt( x^2 -1 ))

lim_(x rarr oo)(sqrt(x-a)-sqrt(x-b))

lim_ (x rarr oo) (x) / (sqrt (x ^ (2) +1))