Similar Questions
Explore conceptually related problems
Recommended Questions
- Show that : lim( x -> oo ) sqrt(x) [ sqrt( x + 2 ) - sqrt( x ) ] =...
Text Solution
|
- The value of lim(x->oo) (sqrt(x^2 + x + 1) - sqrt(x^2 -x +1)) equals
Text Solution
|
- lim(x->oo)x^3sqrt(x^2+sqrt(1+x^4))-xsqrt2
Text Solution
|
- lim(x rarr oo)x^(3)sqrt(x^(2)+sqrt(1+x^(4)))-x sqrt(2)
Text Solution
|
- lim(x->oo) (sqrt(x+1)-sqrtx)
Text Solution
|
- If a > 1, then the value of Lim(x->oo) (a^sqrtx-a^sqrt(1/x))/(a^sqrtx...
Text Solution
|
- Show that lim(x rarr oo)(sqrt(x^(2)+x+1)-x)!=lim(x rarr oo)(sqrt(x^(2)...
Text Solution
|
- lim(x rarr oo x rarr oo)(sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1))=k l...
Text Solution
|
- The value of lim(x->oo)(x/(x+(sqrt(x))/(x+(sqrt(x))/(x+(sqrt(x))/(x+(s...
Text Solution
|