Home
Class 12
MATHS
sin sqrt((pi^(2))/(36)-x^(2))=1 then the...

`sin sqrt((pi^(2))/(36)-x^(2))=1` then the possible positive values of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

log_(sqrt(3))(sin x+2sqrt(2)cos x)>=2,-2 pi<=x<=2 pi then the number of value of x, is

If tan^(2) {pi(x+y)}+cot^(2) {pi (x+y)}=1+sqrt((2x)/(1+x^(2))) where x, y in R , then find the least possible value of y.

STATEMENT-1: The values of f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) lie in the interval [0,(3)/(sqrt(3))]. and STATEMENT-2The domain of definition of the function f(x)=3sin(sqrt((pi^(2))/(16)-x^(2)) is [-(pi)/(4),(pi)/(4)]

(sin x)/(sqrt(36-cos^(2)x))

If 0<=theta<=pi and (sin0)/(2)=sqrt(1+sin theta)-sqrt(1-sin theta) then the possible value of tan theta, is -

If f(x)=int_((x^(2))/(16))^(x^(2))(sin x sin sqrt(theta))/(1+cos^(2)sqrt(theta))d theta, then find the value of f'((pi)/(2))^((16)/(16))

The value of sin sqrt(x^(2) - pi^(2)/36) lies in the interval

let lim_(x rarr pi)(sin alpha x)/(1-2cos beta x)=-sqrt(3), then least positive value of alpha beta is