Home
Class 12
MATHS
Prove that |[a,a^2,a^3],[b,b^2,b^3],[c,c...

Prove that `|[a,a^2,a^3],[b,b^2,b^3],[c,c^2,c^3]|=abc(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]|=abc(a-b)(b-c)(c-a)

Prove that |[a,b,c] , [a^2,b^2,c^2] , [a^3,b^3,c^3]|= abc(a-b)(b-c)(c-a)

|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]|=0 prove that abc= I

Prove that: |[a-b-c, 2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

Prove that |[(a+b)^(2),ca,bc],[ca,(b+c)^(2),ab],[bc,ab,(c+a)^(2)]|=2abc(a+b+c)^(3)

[[ Prove that ,,a+b,b,cb+c,c,ac+a,a,b]]=3abc-a^(3)-b^(3)-c^(3)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

Using properties of determinants,prove that: (a+b)^(2),ca,cbca,(c+b)^(2),abcb,ab,(c+a)^(2)]]=2abc(a+b+c)^(3)

Show that det[[1,1,1a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)det[[a^(2),b^(2),c^(2)a^(3),b^(3),c^(3)]]=(b-c)(c-a)(a-b)(bc+ca+ab)