Home
Class 11
MATHS
Prove that (cosA+cosB)^2+(sinA-sinB)^2=4...

Prove that `(cosA+cosB)^2+(sinA-sinB)^2=4cos^2((A+B)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosA-cosB)^(2)+(sinA-sinB)^(2)=4sin^(2)(A-B)/(2)

Prove that : (sinA+cosA)^(2)+(sinA-cosA)^(2)=2

Prove that 4sinA.cosA.cos2A=sin4A

Prove that: (sinA+sinB)/(sinA-sinB) = tan(A+B)/(2). Cot(A-B)/(2)

If n is an odd positive interger, then ((cosA+cosB)/(sinA-sinB))^(n)+((sinA+sinB)/(cosA-cosB))^(n)=

If A+B+C=pi , prove that : cosA + cosB-cosC=4cos(A/2) cos(B/2) sin(C/2) -1

Prove that: (sin(A+B)-2sinA+sin(A-B))/(cos(A+B)-2cosA+cos(A-B))= tanA

If A+B+C+D = 2pi , prove that : cosA +cosB+cosC+cosD=4 cos( (A+B)/2) cos((B+C)/(2) )cos( (C+A)/2)

In DeltaABC , Prove that: cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2